Functional TSH receptor in human abdominal preadipocytes and orbital fibroblasts.

نویسندگان

  • A Bell
  • A Gagnon
  • L Grunder
  • S J Parikh
  • T J Smith
  • A Sorisky
چکیده

Controversy continues about whether, and to what levels of abundance, thyroid-stimulating hormone receptors (TSHR) are found in human tissues other than the thyroid gland. Restricted expression to the thyroid and orbit would suggest that TSHR represents the target autoantigen in thyroid-associated ophthalmopathy. A more generalized pattern of tissue expression would be inconsistent with TSHR acting as the autoantigen that is solely responsible for selectively targeting the immune system to the orbit. We have detected TSHR mRNA in human abdominal adipose tissue by Northern blot analysis. TSHR protein was also detected, by immunoblotting with two different antibodies, in preadipocytes isolated from human abdominal subcutaneous and omental adipose tissue and in derivative adipocytes differentiated in primary culture. Preadipocytes treated with thyroid-stimulating hormone (TSH) exhibited a sevenfold increase in the activity of p70 S6 kinase, a serine/threonine kinase recently recognized as a downstream target of TSHR in thyroid cells. Activation of p70 S6 kinase by TSH was also observed in orbital fibroblasts. Thus TSHR protein expression is found in fibroblasts from several anatomic locations, suggesting that factors other than site-limited TSHR expression must be involved in restricting the distribution of Graves' disease manifestations. Furthermore, the presence of functional TSHR in preadipocytes raises the possibility of a novel role for TSHR signaling in adipose tissue development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves' ophthalmopathy

Graves' ophthalmopathy (GO) is characterized by expanded volume of the orbital tissues associated with elevated serum levels of TSH receptor (TSHR) autoantibodies. Because previous studies have demonstrated evidence of adipogenesis within the GO orbit, we sought to determine whether M22, a human monoclonal antibody directed against TSHR, enhances adipogenesis in orbital fibroblasts from patient...

متن کامل

TSH signaling and cell survival in 3T3-L1 preadipocytes.

Thyroid-stimulating hormone (TSH) action in adipose tissue remains largely unknown. Our previous work indicates that human preadipocytes express functional TSH receptor (TSHR) protein, demonstrated by TSH activation of p70 S6 kinase (p70 S6K). We have now studied murine 3T3-L1 preadipocytes to further characterize TSH signaling and cellular action. Western blot analysis of 3T3-L1 preadipocyte l...

متن کامل

A modified ELISA accurately measures secretion of high molecular weight hyaluronan (HA) by Graves' disease orbital cells.

Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in t...

متن کامل

Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves' disease.

Thyroid-stimulating hormone receptor (TSHR) plays a central role in regulating thyroid function and is targeted by IgGs in Graves' disease (GD-IgG). Whether TSHR is involved in the pathogenesis of thyroid-associated ophthalmopathy (TAO), the orbital manifestation of GD, remains uncertain. TSHR signaling overlaps with that of insulin-like grow factor 1 receptor (IGF-1R). GD-IgG can activate fibr...

متن کامل

A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves' ophthalmopathy.

Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves' ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves' disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 279 2  شماره 

صفحات  -

تاریخ انتشار 2000